
The behaviour of the O(3) σ model at θ = π

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 4191

(http://iopscience.iop.org/0305-4470/23/19/008)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 08:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/19
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 23 (1990) 4191-4198. Printed in the UK 

The behaviour of the O(3) sigma model at 8 = .;TT 
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Abstract. We investigate the claim that the O ( 3 )  sigma model at topological angle 0 = TT 

is conformally invariant. Using canonical methods we construct the current algebra and 
show that the Kac-Moody algebra does not emerge. This suggests that the model is not 
conformally invariant. 

1. Introduction 

Nonlinear sigma models in two dimensions have been the subject of investigation for 
many years. Classically they are conformally invariant, but very often a non-perturbative 
mass-gap is generated by quantum corrections. For the O( N) and CP( N)  nonlinear 
sigma models this effect has been observed in the 1/N expansion [8], in lattice 
computations [9] and using exact S-matrix results [lo]. The CP“ sigma model and 
the O(3) sigma model, which is equivalent to CP( l ) ,  can be extended to include a 
topological charge term. It has been speculated that the mass-gap of these extended 
models could vanish at topological angle 8 = T [l ,  21. I t  is known that in the large N 
limit of the CP’” model the mass-gap does not vanish at any value of 8 [3,4]. 
Nevertheless, it has been argued that the mass-gap does vanish for the O(3) sigma 
model at 6 = ~ ,  the argument being based on a study of quantum spin chains [5]. 
Further, it is claimed that the fixed point for this model is the SU(2) Wess-Zumino- 
Witten (wzw) model at k = 1 [6]. The current algebra of the wzw model is known to 
be the Kac-Moody algebra. Using canonical quantisation we derive the current algebra 
for the O(3) sigma model with a topological charge term, and show that it does not 
reduce to a Kac-Moody algebra at 8 = T. Hence, it seems unlikely that this model is 
conformally invariant at f3 = 7 ~ .  

The plan of this paper is as follows. In section 2 we see how the current algebra 
can be calculated in the chiral SU(2) sigma model with a Wess-Zumino term and how 
in the wzw case the Kac-Moody algebra appears. In section 3, we calculate the current 
algebra in the O(3) sigma model at 8 = 7 and see how it does not coincide with the 
diagonal algebra in the wzw model. Technical details for this calculation are given in 
the appendix. In section 4 we discuss operator ordering and its consequences for the 
current algebra, using Dirac quantisation. We see that in fact the algebra calculated 
classically is correct. 

2. SU(2) chiral nonlinear sigma model with Wess-Zumino term 

As we discussed in the introduction, the O(3) sigma model at 8 = T is claimed to be 
equivalent to the SU(2) wzw model at k = 1. The wzw model provides an infrared 
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stable fixed point for the SU(2) chiral sigma model with a Wess-Zumino term [7]. 
This result follows from the study of the current algebra of the later model [I  I], which 
at  the fixed point becomes the Kac-Moody algebra. 

The chiral SU(2) sigma model with a wz term is defined by the action 

S = 7 d2x T r [ P  U"a, U ]  
f 'I 

where U is an  element of SU(2) and  k must be an  integer is the theory is to be well 
defined. The second term in the action is the so-called Wess-Lumino term. The action 
is invariant under U ' =  GLUGR' where GL and G, are independent global SU(2) 
transformations. 

In order to perform canonical quantisation we must go to a more conventional 
expression for the action, as a two-dimensional integral of a Lagrangian. On doing so 
we lose manifest invariance and  the Lagrangian now changes by a total divergence 
under a symmetry transformation. 

Now, with U = exp($iA,4") the Wess-Zumino term can be written as follows 

d2x Tr[ W, W, W A ] ~ F v A  - - lYD d'x h a h a ' I ~ U a , ( b h F ~ "  (2.2) 
U 

where W, = U 3, U and hoh = Tr l;) d t  $Aed' W,, Whl. This metric satisfies 

3h,,t,,,,= - i T r [ h ,  A h  A, Ri;nRhlhR; : l l  (2.3) 
where R-' is the right vielbein ( U ,  =fiAhUR;J). 

following distribution identity: 
This last property is essential to the calculation. The other essential point is the 

a 
(2.4) 

a 
a ( y ) - 6 ( x - y ) =  - a ( x ) - i S ( x - - y ) + a ' ( y ) 6 ( x - y ) .  

ax 
The symmetry currents for the right SU(2) are 

f 'k 
16.5~ 

j,, = W,, + i - E,,, W::. (2 .5)  

In the special case f' = 1 6 ~ /  k, the two components of the current are essentially the 
same and we have 

j.+ = i( j,, + i jR  1 = jRo . (2.6) 
The three commutation relations collapse to one, the Kac-Moody algebra: 

Moreover, the current conservation @jRp becomes a-j, = 0. 
Similar results hold for the left SU(2) symmetry, which lead to another Kac-Moody 

algebra with opposite sign in the Schwinger term and j- = j,, satisfying a + j  = 0. 
It i s  known that the unitary representation of a Kac-Moody algebra is conformally 

invariant. This implies that p = 0 and therefore f' = 1 6 ~ / k  is a fixed point of the 
renormalisation group. 
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If k = 1 the unitary representation is essentially unique [7]. Thus, a theory satisfying 
a Kac-Moody algebra with k = 1 must be equivalent to the wzw model at k = 1. 

3. O(3) sigma model with a topological term 

Let us consider the O(3) sigma model with a topological term included. This is given 
by the Lagrangian 

with the additional constraint 4 2  = 1. 
This Lagrangian is invariant under SO(3) transformations. In two dimensions 

(3.2) 

is the winding number of the map S2++S2 defined by b , ( x ) .  It is an integer and it is 
constant under small variations of the fields. 

Although the Lagrangian is not parity invariant for a general e, it is invariant in 
the two special cases 0 = 0 and 8 = 77. This is a consequence of the fact that physics, 
depending only on exp(iS), is periodic in 8. Therefore a parity transformation, which 
effectively changes the sign of 0, does not change the weight of a field configuration 
in the action functional if 6 = n.  Moreover, the symmetry becomes the full O(3) due 
to the extra symmetry 4++--b,. It is worth noticing that Q, being a constant under small 
variations, does not affect perturbation theory and, as a consequence, 8 does not get 
renormalised perturbatively. 

Now we are interested in seeing what the consequences of conformal invariance 
in such system would be. We see that this implies equivalence with the wzw model at 
k = 1, as this is the only conformally invariant system with a continuous symmetry 
commuting with parity and some other discrete Z2 symmetry (which in this case is 
4 w - 4 ) .  

The canonical computation of the current algebra in the chiral SU(2) sigma model 
with a Wess-Zumino term shows us that the Kac-Moody algebra appears for the 
special value of the coupling constant that defines the wzw model. This constrains the 
system to be conformally invariant and the states to fit some unitary representation. 
There is essentially only one unitary representation for k = 1. 

In our model we again have two coupling constants, one of them not renormalised. 
We would expect a similar effect in the current algebra, leading to a Kac-Moody 
algebra, if the system is equivalent to the wzw model. 

In order to perform the computation of the algebra using canonical methods we 
first solve the constraint. To do so we change parametrisation and introduce the fields 
vu,  a = 1, 2, as follows: 

The Lagrangian becomes: 

(3.3) 
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The drawback of this choice is that the symmetry does not act linearly in the fields 
cp. It still acts linearly in the 43 direction: 

s3(Pa = Eab(Ph (3.5) 

s a q h  = (1 - h q 2 ) 6 a h + + ( P a ( P h .  (3.6) 

but it becomes nonlinear in the other two directions: 

The number of commutators that we have to compute is nine in the unconstrained 
formalism. But when expressed in terms of the original fields 4 they reduce to three 
independent ones. 

The current algebra for the 0 = 0 case is (expressed in terms of the 4's) 

[ j b ,  j ; l=  - i E ' J k j i  

1 a 
g 

[ j b ,  j:] = -iE'JkjF - i - (6 "  - 4 l 4 ' ) &  8 ( X - Y )  ( 3 . 7 )  

[ji, A1 = 0. 

We note that the commutator of j ,  with j, contains a field dependent term, which 
is in fact an O(3) projector. 

The introduction of the topological term does not change the equations of motion, 
since it is a constant under small perturbations, but it changes the momenta and the 
currents, adding to them a term which is trivially conserved: 

j: = E ~ ~ ~ ~ V ~  (3.8) 

where 9" are arbitrary functions. 
In order to simplify the calculation we re-express the Lagrangian as 

and we consider a general real a. The momenta are 

and the currents are 

(3.9) 

(3.10) 

(3.11) 

The zero component of the currents have the same expression as they had when 
0 = 0 if written in terms of the momentum. This ensures the right algebra for the zero 
components and therefore for the charges. There is momentum dependence in the j f ,  
as we would expect if we want a Kac-Moody algebra to be satisfied. But we see that 
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with such momentum dependence we will not get rid of the field dependent term of 
the algebra. In fact, the following algebra emerges: 

(3.12) 

4. Constrained formalism 

The calculation in the previous section has been classical. We have calculated the 
current algebra using Poisson brackets and we have not worried about operator 
ordering. These are not trivial problems in the unconstrained formalism, as we have 
operators in the denominator, which can only be dealt with in a power series expansion. 

The problem is clarified when we use the Dirac procedure of quantising systems 
with constraints. The Dirac brackets arising from the Lagrangian with a topological 
term are the same as the ones arising for the system at f3 = 0. Ordering problems in 
both current algebra and the Dirac brackets can be solved by demanding hermiticity. 

Classically, the constraints that are relevant to our calculation are 

4’=0 4l-I = 0. (4.1) 

[ d ’ ( x ) ,  d’(Y)I = 0 

[ d ‘ ( x ) ,  n J ( y ) l =  i(8” - d ’ d ’ P ( x  - y )  

The Dirac brackets are 

(4.2) 

[ n ’ ( x ) ,  n’(x)] = i ( l I ’ d ’ - n J 4 ’ ) 8 ( x - y )  

and the currents are (we use vector notation here) 

j ,  = d x 3,d - a E p v [ d  x ( 4  x 8”d)I. (4.3) 

We now give a precise ordering by demanding hermiticity. For the constraints this 
will mean 

(b2=0 ;(4n+nd) = O .  (4.4) 

The commutation relations are consistent as written before. 
In order to be able to construct Hermitian currents, we have to re-express them in 

terms of the momenta, as we only know the commutation relations among the 4’s and 
the n’s, and we do not know how the d behave. We have 

j ” = - d X n  (4.5) 

which is well defined and Hermitian, and 

1 

g 
j ,  =-j L-4 x 4’+ Q ( 4  x ( 4  x (n - ad x d’)))]. (4.6) 
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The only term which is not well defined is 4 x (4  x IT), as 4 and 4' commute. The 
only Hermitian combination for this term is 

4 x (4 x n) ' = $ &  " k &  kin' (,"I4 14 ' + 4 1 4 a ' n m )  = -n' (4.7) 

where we have made explicit use of both constraints (4.4). We are left with 

1 

g 
j ,  = U r I  -7 (1 + U * ) 4  x 4' .  (4.8) 

Now we will be able to calculate the current algebra using the commutation relations 
arising from the Dirac brackets and treating the fields as non-commuting operators. 
The algebra is unchanged, and when we rewrite it in terms of the original coupling 
constants we have 

[ jb,  j i ]  = -i&'"jjo" 

As discussed in section 3, that algebra does not reduce to the Kac-Moody algebra 
for any value of the topological angle 8. Thus we should study its representations at 
different values of the topological angle. In fact, we know that for 8 = 2 n r ,  the 
representations should be the same as the ones at 8 = 0. This leads us to believe that 
representations at different values of 8 are going to be essentially the same. 

In conclusion, we have shown how the Kac-Moody emerges in the wz SU(2) chiral 
model for a special value of the coupling constant. We expected a similar effect in the 
O(3) sigma model at 8 = T if the two models are equivalent. We have calculated the 
algebra in the O(3) sigma model at 8 = r and we have seen there is not any value of 
the coupling constants for which the Kac-Moody algebra appear. 
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Appendix. Computation of the current algebra for the O(3) sigma model with a 
topological term 

As the currents for the model with a topolbgical term can be expressed in a simple 
way in terms of the currents of the model without the topological term (corresponding 
to U = O  in (3.9)), it is convenient to calculate the algebra for the former model first. 
The complete calculation becomes then quite simple. 

In both cases the Lagrangian is invariant under 

8Pu = ff&v, 8pu = f f hSh(Pu  (A1 1 
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for constants a and CY,, where &(P, and &(P, are defined as in (3.5) and (3.6). The 
choice of S b q n  is not the one that naturally arises from but it is simply 
related with it: 

= 

ab(Pa = -&absh(Pa. (‘42) 

Commutation relations are the same for 6 and 6‘,  and the calculation is simpler 
using 6. 

It is convenient to define 

In order to find the currents we consider local variations of the Lagrangian. We get 

6L = II:a,dicp, (‘44) 

and therefore the currents are 

j :  = n:&(Pa j :  = llg6,pob. 

Poisson brackets are 

[ (Pa (x )  9 n b ( Y )  1 = iaab6 (x - Y 1. (A61 

The zero components of the currents have the same form with or without the 
topological term: 

j : =  - & a b ( P a n b  (A71 

(‘48) 

[jz,jO,I = -i&abj: ( ‘49) 

.O j 8  = (1 + ; ( P ’ ) ~ I ,  -$&ab(PaJ.?* 

The algebra for these terms is easy to compute. We get 
.O [ j k j : ]  = - i & a b J b  

which can be written 
.o .o - [JI ,J , l-  -i&& 

The calculation of the j o ,  j ’  commutators is more involved due to the presence of 
spatial derivatives of the fields. We consider first the a = O  case. Then we have 

We need to use equation (2.4) and we get 
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which can be rewritten, in terms of the constraint fields: 

[jy,jiI = --i&,,dL -7 (8,, - 4,4,) ax ~ ( X - Y ) .  (A12) 

To re-express the commutator like this we must make use of 8’ instead of S (see (A2)). 
The spatial components of the currents commute, as they do not depend on the 
momenta. 

i d 

g 

Now we consider a non-zero a. In that case we have a different U:: 

then 

jt = n:8,qa = - a 2 & , b r I b 8 , ( p a  + (1 + a’)jt,=, (A141 

j:= -apo,nI,+(a2+1)j: ,=,  (A151 
j: = -a&,b[(l +ip’)nb -t(nccp,)~b]+(a2+ l)j:,=,. (‘416) 

and therefore 

We see that the dependence in 9’ is included in the jt,=, part of the currents. This 
means that the calculation of [ j?, jj]  is now trivial. 

We are left with the computation of [jt, j,!]. In two dimensions there can be no 
Schwinger term in this commutator [ 121. This result is confirmed by explicit calculation. 
We get 

ia  
g 

[A, j3 =ia2eabj ;  - i ( l +  a’)&&+; 

which again can be expressed 
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